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Abstract In this work, we extend the concept of inte-
gral control to equilibrium-based learning control. As
far as the plant reaches an equilibrium that deviates
from the reference, a learning mechanism will update
the control action. The new control action will drive the
plant output to reach a new equilibrium that is closer the
reference set-point. By applying fixed point theorem,
we can prove the convergence of the controlled equilib-
rium to the reference set-point exponentially, where the
plant dynamics can be generically nonlinear and non-
affine. The only prior information required is a non-
singular input–output gradient of the stabilized plant.
As a real-time application, the proposed controlmethod
is applied to motion control of a tail-actuated robotic
fish. To facilitate the controller design, the dynami-
cal model of the robotic fish is established based on
Newton’s second law and Lighthill’s small amplitude
model. In the end, both simulations and experiments
are conducted to illustrate the effectiveness of the pro-
posed learning approach.

X. Li
Department of Electrical and Electronic Engineering,
Imperial College London, London, UK
e-mail: xuefang.li@imperial.ac.uk

Q. Ren (B)
College of Control Science and Engineering, Zhejiang
University, Hangzhou, China
e-mail: latepat@gmail.com

J.-X. Xu
Department of Electrical and Computer Engineering,
National University of Singapore, Singapore, Singapore
e-mail: elexujx@nus.edu.sg

Keywords Learning control · Robotic fish · Motion
control · Turning control · Self-adaption

1 Introduction

Learning control is known to be efficient in dealing
with repetitive control tasks. Compared to traditional
control approaches, the basic idea of learning control is
to utilize the information from previous trial or period
so as to improve the control performance of the current
trial or period. Generally, there are two main learning
approaches, known as iterative learning control (ILC)
[1–6] and repetitive control (RC) [7,8]. ILC aims at
discontinuous operations and the learning updates are
carried out from trial to trial. RC is applicable to sys-
tems operating continuously and the learning updates
are carried out from period to period. Both ILC and RC
aim at perfect tracking over the entire trial or period.

ILC is developed for systems that are able to com-
plete some tasks over a fixed time interval and per-
form them repeatedly. The control objective of ILC is
to achieve perfect tracking over thewhole time interval,
which relies on the strict resetting condition. In prac-
tical applications, however, most of the industrial pro-
cesses operate continuously without resetting. In addi-
tion, majority of the control tasks are to investigate the
step response of the control systems since knowing the
step response of a dynamical system gives information
on the stability of the system, and on its ability to reach
one stationary state when starting from another. There-
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fore, for systems operating continuously in time, ILC
is no longer applicable.

In contrast to ILC, RCmainly focuses on the infinite
time interval and is used specially in dealing with peri-
odic signals, for example, tracking periodic reference
or rejecting periodic disturbances. In RC, the command
to be executed is a periodic function of time. There is
no resetting of the system to the same initial condition
before the start of the next period, and thus transients
can propagate across periods.However,RC is actually a
period-based pointwisely learning approach. For some
of control processes, the control action is not able to
update at every time instant but only updates once over
an interval. One example is digital control in which
the control action is updated once at the beginning of
a sampling interval. Another example is the motion
control of robotic fish. For a tail-actuated robotic fish
prototype, the manipulable parameters are the undula-
tory frequency and amplitude of the caudal fin, which
can only be updated at the beginning of each undula-
tory cycle. Within a undulatory cycle, the undulatory
frequency and amplitude cannot be adjusted. Hence,
from this point of view, RC is not applicable to sys-
tems whose control actions can only update once in
an interval. This motivates us to explore new learning
approaches.

In this work, our aim is to drive a plant output
to reach a given reference set-point, where the plant
dynamics is nonlinear.Without appropriate control, the
plantwill reach its equilibrium, but the equilibriummay
deviate significantly from the reference set-point. From
internal model theory, we need to incorporate an appro-
priate internal model which can alter the plant equilib-
rium and drive the equilibrium to reach the reference.
Motivated by this idea, we extend the concept of inte-
gral control to equilibrium-based learning control. As
far as the plant reaches an equilibrium that deviates
from the reference, a learning mechanism will update
the control action. The new control action will drive the
plant to reach a new equilibrium that is getting closer
the reference set-point. Thus, the learning controller
plays the role as an internal model.

For a linear plant, it is well known that an inte-
gral controller can be incorporated in the control loop,
which plays the role as an internal model. The inte-
gral action will ultimately eliminate the discrepancy
between the actual plant output and the reference set-
point, namely reach the equilibrium (steady state) that
is consistent with the reference. For nonlinear plants,

however, the analysis of the equilibrium status subject
to integral control would be much more difficult and
there lacks appropriate design methods. While for the
proposed novel learning approach, we can prove the
convergence of the controlled equilibrium to the refer-
ence set-point exponentially by applying the fixed point
theorem, where the plant can be generically nonlin-
ear and non-affine. The only prior information required
for the stabilized plant is the non-singularity of input–
output gradient.

As a real-time application, the proposed learning
control algorithm will be applied to motion control
of a tail-actuated robotic fish. Previous works reported
on motion control of robotic fish mainly concern two
aspects: (1) generate fish-like swimming gait in a robot
and (2) drive a robotic fish to achieve a desired motion.
The former explores producing coordinated move-
ments of actuation components of a robotic fish, and the
latter focuses on controlling the motion of whole fish
body. In the past, there were several works reported on
model-based feedback controllers for motion control
of robotic fish or more general autonomous underwa-
ter vehicles (AUVs), such as [9–13]. However, the con-
trol performance of model-based controllers is highly
dependent on the accuracy of the nonlinear dynamics
that describes the interaction between robot and water.
Actually, due to the complexity of hydrodynamics, pre-
cise modeling of a robotic fish dynamics is a challeng-
ing problem. To overcome the difficulty in accurate
modeling, several partial model-based or model-free
control design methods are investigated, such as fuzzy
logic control [13–15], learning control [16,17], etc. It
is worthwhile to note that the learning approaches in
[16,17] are off-line learning, which is not desirable in
practical applications.

In this paper, different from the previous learning
approaches, the proposed equilibrium-based learning
control is actually one kind of online learning approach.
To facilitate the proposed equilibrium-based learning
controller design, we first construct a mathematical
model for the robotic fish by utilizing Newton’s second
law and Lighthill’s small amplitude model, where the
dynamical model is highly nonlinear and non-affine in
control input. According to the constructed dynamical
model, two learning schemes are proposed for turning
control of the robotic fish. It is worthwhile to mention
that only the system gradient information instead of the
perfect model is required in the controller design. Fur-
thermore, due to the complexity of the mathematical
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model, a self-adaption rule is introduced for the deter-
mination of learning gains, which is able to expedite the
convergence rate. The efficiency of the proposed learn-
ing controllers are illustrated by both simulations and
real-time experiments, and excellent speed and turning
control are achieved for the robotic fish.

The paper is organized as follows. Section 2 presents
the problem formulation and control method. Sec-
tion 3 details the hardware configuration and dynamical
model of robotic fish. Section 4 presents the applica-
tion of the proposed control method to the robotic fish.
Finally, a brief conclusion is given in Sect. 5.

2 Problem formulation and method

Consider the following nonlinear non-affine system

ẋ(t) = f(x(t),u(t)), (1a)

y(t) = h(x(t)), (1b)

where x ∈ R
n , u ∈ R

p, and y ∈ R
p are the system

state, input and output vectors; f(x,u) is continuously
differentiable w.r.t x and u.

To facilitate the controller design, we impose the
following two assumptions to system 1.

Assumption 1 For a given control input, system 1 has
a unique steady-state response.

Remark 1 Assumption 1 can be easily justified for
majority of industrial control plants, including chem-
ical processes and motion systems. If Assumption 1
does not hold, we can first design a stabilizing con-
troller that is able to stabilize the closed-loop system,
and then design the learning controller for the stable
closed-loop system. The idea is demonstrated in the
block diagram shown in Fig. 1, where the inner loop
is the stabilizing controller, and the outer loop is the
learning controller. For plants already stable or well
damped, there is even no need to apply such a stabiliz-
ing controller.

Remark 2 For real-time applications, the stabilizing
controller component in Fig. 1 can also be replaced
by (or incorporated with) a fault-tolerant controller
to detect and isolate faults, and thus take appropri-
ate remedial actions to prevent critical failures in the
control system. The details for design and analysis of

Fig. 1 Block diagram of a dual-loop control

the fault-tolerant controller will be discussed in future
works.

Assumption 2 For system 1, both the matrices ∂f
∂x and

∂h
∂x

(
∂f
∂x

)−1
∂f
∂u are full-rank.

Here, a simple linear system is illustrated to show
the meaning of Assumption 2. For the following linear
system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

Assumption 2 implies that both the matrices A and
CA−1B have full rank.

Remark 3 When A is not full-rank, it is possible to
apply a state feedback tomake it full-rank. For instance,
as far as (A, B) is controllable, there exists a state trans-
formation such that A matrix can be transformed into
canonical form, then an appropriate state feedback will
make the closed-loop A full-rank. Similar to Remark 1,
this state feedback can be a part of the stabilizing con-
trol. With a full-rank A, then the second condition in
Assumption2, i.e.CA−1B being full-rank, is equivalent
to CB being full-rank. When output tracking is consid-
ered, full-rank of CB is necessary. In fact, in both ILC
and RC, CB needs to be full-rank.

In this work, we define the i th learning interval
as [Ti−1, Ti ] where the inner closed-loop system will
reach steady state or equilibrium before Ti , Ti > 0,
i ∈ Z+, and the corresponding control input signal is
ui , namely,

u(t) = ui , Ti−1 ≤ t ≤ Ti , i ∈ Z+,

whereui is a constant vector. Since it is assumed that the
control action only updates as far as the plant reaches
an equilibrium, it is obvious that ẋ(Ti ) = 0. Denote
xi � x(Ti ), then (xi ,ui ) is the equilibrium of system
(1), namely,{
0 = f(xi ,ui ),
yi = h(xi ).

(2)
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Let yd be the target, which is generated by
{
ẋd = f(xd ,ud) = 0,
yd = h(xd),

(3)

where ud is the desired control input.
The control objective is to determine a sequence of

control inputs ui , i ∈ Z+ such that the tracking error
ei � yd − yi converges to zero as the iteration number
i increases.

The proposed equilibrium-based learning controller
is presented as follows.

ui+1 = ui + �ei (4)

where � is the learning gain matrix to be determined.

Remark 4 The expression of the learning law (4) is
similar to the P-type ILC law. However, different from
classic ILC, the learning scheme (4) is continuous along
the time axis without any resetting. The control action
updates as far as the plant reach its equilibrium point
that deviates from the reference set-point.

Remark 5 In practical applications, the learning inter-
val differs from the system sampling interval. If the
system response is slow, the learning interval needs
to be sufficiently long so as to reach an equilibrium.
In such circumstance, a learning interval may equal to
multiple sample periods. On the contrary, if the system
could respond fast, the learning interval can be short
and the extreme is equal to one sampling interval.

The convergence property of the proposed learning
controller is derived in the following theorem.

Theorem 1 For the nonlinear system (1), under the
Assumptions 1 and 2, the learning scheme (4) guaran-
tees that the tracking error ei (t) will converge to zero
asymptotically, provided that the learning gain matrix
� is chosen such that for 0 < δ < 1,

sup
x∈Rn ,u∈Rp

∥∥∥∥∥Ip + �
∂h
∂x

(
∂f
∂x

)−1
∂f
∂u

∥∥∥∥∥ ≤ δ. (5)

Proof Let �ui � ud − ui . From (4), we can obtain

�ui+1 = �ui − �ei
= �ui − �(yd − yi )

= �ui − �[h(xd) − h(xi )]
= �ui − �

∂h
∂x

(xd − xi ). (6)

By applying the Mean Value Theorem, we have

0 = f(xd ,ud) − f(xi ,ui )

= f(xd ,ud) − f(xd ,ui ) + f(xd ,ui ) − f(xi ,ui )

= ∂f
∂u

(xd , ûi )(ud − ui ) + ∂f
∂x

(x̂i ,ui )(xd − xi ), (7)

where ûi = ud + θui (ui − ud), x̂i = xd + θxi (xi − xd),
and θui , θxi ∈ (0, 1). Therefore,

xd − xi = −
(

∂f
∂x

)−1
∂f
∂u

(ud − ui ). (8)

Substituting (8) into (6), we can obtain

�ui+1 =
(
Ip + �

∂h
∂x

(
∂f
∂x

)−1
∂f
∂u

)
�ui . (9)

Taking norm on both sides of (9) yields

‖�ui+1‖ ≤
∥∥∥∥∥Ip + �

∂h
∂x

(
∂f
∂x

)−1
∂f
∂u

∥∥∥∥∥ ‖�ui‖, (10)

which implies the convergence ofui when the condition
(5) holds. Therefore, we can obtain the convergence of
the tracking error ei . ��

3 Robotic fish prototype and dynamic modeling

Figure 2 shows the schematic structure of the robotic
fish prototype. The length of the robotic fish is approx-
imately 36 cm. The lunate tail is connected with the
body by a high-torque servo motor (JR DS R8801).
Due to mechanical restriction, the angle range for the
servomotor is about − 60◦ to 60◦. The tail is made
of perspex with chord length 12 cm and span 17 cm.
The body of the robot has a sealed compartment com-
posed of plastic side or top panel wrapped with water-
proof tap. The compartment contains a micro con-
troller (ATMEL ATSAM3X8E), an inertial measure-
ment unit (VN-100), a Bluetooth wireless communica-
tion module and a lithium battery. The micro controller
is responsible for controlling the servomotors, transfer-
ring diagnostic information via the wireless link, pro-
cessing sensor data andmaking decisions. Thewireless
communication module is used to receive command
from a host computer. The lithium battery is applied to
provide power for the servomotors. The frequency of
the control signal is fixed at 1 Hz in this work. In this
work, the pectoral fins will not be used to propel the
robotic fish, and the tail is the only actuator.
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Fig. 2 Schematic structure of the robotic fish

Fig. 3 External forces acting on the robotic fish

Figure 3 shows a simple diagram of the robotic fish
with the principle acting forces. Without loss of gen-
erality, we assume that both the body center of mass
and the central line locate at the center of the fish body.
The body position is given relative to an inertial frame
by [x, y], where the positive direction is taken to the
right. The body orientation φ is measured relative to
the inertial + x-axis, and θb is the bias angle between
the central line of the fish body and the fish tail. The
length of the robotic fish is l and that of the tail is l/3.

3.1 Caudal fin thrust modeling

Figure 4 shows the top-view geometry of the robotic
fish. The body of the robotic fish prototype is rigid, and
it is actuated by a caudal fin periodically.

The displacement h(x, t) at the position x can be
calculated as follows

h(x, t) = x cos(θb) tan(θ(t)), (11)

where θ(t) in radian is the angle between the tail and the
central line of the robotic fish plus the angle bias θb . The
angle θ(t) is directly proportional to themotor rotation,
and it is used as the driving term as a function of time. If

Fig. 4 The top-view geometry of the tail-actuated robotic fish

θ(t) is driven sinusoidally, i.e., θ(t) = θa sin(2π f t) +
θb, the displacement h(x, t) can be written as

h(x, t) = x cos(θb) tan(θa sin(2π f t) + θb), (12)

where θa is the amplitude, f is the frequency of
the sinusoidal motion, and θa sin(2π ft) is the angle
between the tail and the central line of the robotic fish.
Now, taking the derivative with respect to time t on
both side of (12), it follows that
(

∂h(x, t)

∂t

)

x= l
3

= 2

3
π f θal cos(θb) sec

2(θa sin(2π f t)+θb)

× cos(2π f t), (13)

In addition, the spatial derivative of h(x, t) at x = l/3
is

(
∂h(x, t)

∂x

)

x= l
3

= cos(θb) tan(θa sin(2π f t) + θb).

(14)

According to Lighthill’s small displacement model
developed in [18,19], the average trust F generated
by the fish is given as follows

F = ρA(l)

2

[(
∂h

∂t

)2

− v2
(

∂h

∂x

)2
]

, (15)

where ρ is the density of water, v is the velocity of fish,
A(l) is the area of a circle computed by using the overall
dimension of the tail as a diameter, and the squares of
the derivative values are averages over a typical cycle,
namely,
(

∂h

∂t

)2

� 1

T

∫ T

0

(
∂h(x, t)

∂t

)2

x= l
3

dt, (16)

(
∂h

∂x

)2

� 1

T

∫ T

0

(
∂h(x, t)

∂x

)2

x= l
3

dt, (17)

where T = 1/ f is the period of sinusoidal motion.
In this work, the undulatory frequency is fixed at
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Fig. 5 The integrated square of the slope and velocity of the tail
over one cycle versus amplitude
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Fig. 6 The integrated square of the slope and velocity of the tail
over one cycle versus bias

f = 1Hz, namely, T = 1 s, and the amplitude of undu-
lation and bias of fish tail will be used tomanipulate the
motion of the robotic fish. Further, the time-averaged
values for these derivatives can be found numerically
for various amplitudes and biases, and the results are
shown in Figs. 5 and 6, respectively.

Denote

H1(θa, θb, f ) � ρA(l)

2

(
∂h

∂t

)2

(18)

and

H2(θa, θb, f, v) � ρA(l)v2

2

(
∂h

∂x

)2

. (19)

The thrust F can be rewritten as

F(θa, θb, f, v) = H1(θa, θb, f ) − H2(θa, θb, f, v).(20)

Numerically, the variation of F with respect to the
amplitude θa and the bias θb is shown in Fig. 7, where
f and v are fixed as 1 Hz and 0.1 m/s.
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Fig. 7 The variation of thrust with respect to θa and θb

3.2 Drag force modeling

Besides the thrust generated by caudal fin undulations,
the robot body also experiences drag force. The drag
can be calculated through surface integrals of vector
drag per area around the fish body. Since the drag is
highly relatedwith the geometry of the object immersed
in water and relative velocity between the object and
water, in principle, the exact force distribution can be
obtained by solving the Navier–Stokes equation. How-
ever, the calculation is quite complicated and time con-
suming. Similar as [20–22], we assume the drag on the
body of the robot is generated in steady or quasisteady
flow, and for simplicity, the drag takes the form,

w⊥ = − f⊥(v⊥)2sign(v⊥), (21)

w‖ = − f‖(v‖)2sign(v‖), (22)

where v⊥ and v‖ are perpendicular component and par-
allel component of the velocity v, respectively, and f⊥,
f‖ are the water resistance coefficients in the corre-
sponding directions. Based on the geometric relation-
ship (refer to Fig. 3), we have

v⊥ = vx sin(φ) + vy cos(φ),

v‖ = vx cos(φ) − vy sin(φ),

wx = w⊥ sin(φ) + w‖ cos(φ),

wy = w⊥ cos(φ) − w‖ sin(φ),

where vx , vy are projection of the velocity v on x-axis
and y-axis, and wx , wy are projection of the drag on
x-axis and y-axis.

Furthermore, as shown in [23], the fluid adds a
damping effect to rotations of the body about its princi-
ple axis, since the rotating body will induce separated
flow about its bluff edges that will transfer rotational
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kinetic energy from the body to the fluid. This effect is
included in the model as a simple viscous moment that
impedes body rotation

Mdamp = − cmω, (23)

where ω is body fixed angular velocity and cm is a
simple damping coefficient

3.3 Dynamical model of robotic fish

By applying Newton’s second law, the dynamical
model of the tail-actuated robotic fish is derived as fol-
lows⎧⎨
⎩

Mẍ = Fx + wx ,

Mÿ = Fy + wy,

I φ̈ = Fxl sin(φ)/3 + Fyl cos(φ)/3 − cm φ̇,

(24)

where M and I are the mass and moment of inertia
of robotic fish, respectively, Fx � F cos(θb − φ), and
Fy � F sin(θb − φ).

In turning control, the speed and angular velocity
of robotic fish are our foremost concerns. Thus, the
control output vector is

Y = [v, ω]T =
[√

ẋ2 + ẏ2, φ̇

]T

. (25)

Taking the time derivative of y, we can obtain that

dY

dt
=

[
(ẋ ẍ + ẏ ÿ)√
ẋ2 + ẏ2

, φ̈

]T

=
⎡
⎣

1
v

(
vx (Fx+wx )

M + vy(Fy+wy)

M

)

Fx l sin(φ)+Fyl cos(φ)−3cm φ̇

3I

⎤
⎦

�
[

P1
T (v, θa, θb)

P2
T (v, ω, θa, θb)

]
(26)

From the Eq. (26), it is clear that the relation between
inputs and outputs is highly nonlinear. In the following
subsection, we will show that for such a complex con-
trol system, two simple decoupled control algorithms
are sufficient to drive the robot to the desired motion.

Before addressing the controller design problem,we
first make the following assumption.

Assumption 3 In each undulation cycle, both the
speed and angular velocity of robotic fish can reach
their steady states. That is, for each pair of given con-
trol input (θa, θb), the robotic fish can approach to the
equilibria v̇ = 0 and ω̇ = 0 within the undulatory cycle
[iT, (i + 1)T ].

Remark 6 This is a reasonable assumption since the
robotic fish model is a high damping system, and the
assumption can be verified numerically in the following
section.

4 Application to the robotic fish

In this section, the proposed equilibrium-based con-
troller will be applied to the robotic fish prototype.

4.1 Controller design

Denote vd and ωd the desired speed and angular veloc-
ity of the robotic fish, respectively. θda and θdb are the
desired amplitude and bias. The actual speed and angu-
lar velocity at the i th motion are defined as vi �√
ẋ(iT )2 + ẏ(iT )2, and ωi � φ̇(iT ), respectively. Let

ev
i � vd − vi and eω

i � ωd − ωi be tracking errors. Set
the initial control inputs as θ0a and θ0b .

In termsof the control inputs and themeasured errors
at the i th motion, take the following learning control
schemes to generate the actual inputs at the (i + 1)th
motion:

θ i+1
a = θ ia + γ1e

v
i , (27)

θ i+1
b = θ ib + γ2e

ω
i , (28)

where γ1 and γ2 are learning gains to be designed. Then
the convergence of the tracking error can be summa-
rized as follows.

Corollary 1 Consider the robotic fish model (24)
under the Assumption 3 and the learning schemes (27)
and (28). Then ev

i and e
ω
i will converge to zero as i goes

to infinity if and only if

sup
v,ω,θa ,θb

∥∥∥I + �A−1
i Bi

∥∥∥ < 1, (29)

where

� �
[

γ1 0
0 γ2

]
,

Ai �
⎡
⎣

∂P1
T

∂v

(
v̂i , θ̂

i
a , θ̂

i
b

)
0

∂P2
T

∂v

(
v̂i , ω̂i , θ̂

i
a , θ̂

i
b

)
∂P2

T
∂ω

(
v̂i , ω̂i , , θ̂

i
a , θ̂

i
b

)
⎤
⎦ ,

Bi �
⎡
⎣

∂P1
T

∂θa

(
v̂i , θ̂

i
a , θ̂

i
b

)
∂P1

T
∂θb

(
v̂i , θ̂

i
a , θ̂

i
b

)

∂P2
T

∂θa

(
v̂i , ω̂i , , θ̂

i
a , θ̂

i
b

)
∂P2

T
∂θb

(
v̂i , ω̂i , , θ̂

i
a , θ̂

i
b

)
⎤
⎦ ,

v̂i = vd + ϑv
i (vi − vd), ω̂i = ωd + ϑω

i (ωi − ωd),

θ̂ ia = θda + ϑa
i (θ ia − θda ), θ̂ ib = θdb + ϑb

i (θ ib − θdb ) with
ϑv
i , ϑω

i , ϑa
i , ϑb

i ∈ (0, 1).

123



www.manaraa.com

2722 X. Li et al.

Proof Define xi = [vi , ωi ]T and ui = [
θ ia, θ

i
b

]T
. Then

system (26) can be represented in the form of system
1 with

f(xi ,ui ) =
(

P1
T

(
vi , θ

i
a, θ

i
b

)
P2
T

(
vi , ωi , θ

i
a, θ

i
b

)
)

, h(xi ) = xi .

Let

Ai � ∂f
∂x

(
v̂i , ω̂i , , θ̂

i
a, θ̂

i
b

)
, Bi � ∂f

∂u

(
v̂i , ω̂i , , θ̂

i
a, θ̂

i
b

)
.

Then following the similar procedures as the proof of
Theorem 1, the convergence of the tracking errors ev

i
and eω

i can be obtained. ��
Remark 7 Corollary 1 provides a sufficient conver-
gence condition, namely, as long as the learning gain
� is designed appropriately to satisfy (29), the conver-
gence of ev

i and e
ω
i can be guaranteed. In fact, the learn-

ing speed can be expedited by combining the learn-
ing scheme with other design techniques, e.g., the self-
adaption rule that scales the learning gain up and down
by a factor [24,25]. Mathematically, the self-adaption
rule can be expressed as follows:

γi =
{

ηγi−1, if sign(ei ) = sign(ei−1),
1
η
γi−1, otherwise,

(30)

before the tracking error converges to the prespecified
neighborhood of zero, where η > 1 is a tuning param-
eter. Actually, the adaption rule (30) is based on the
simple idea: On the one hand, if sign(ei ) = sign(ei−1),
it means that the increment of input value is not enough,
thus it is desirable to increase the learning gain, hence
increase the step size of learning. On the other hand,
sign(ei ) 	= sign(ei−1) means that the change of input
value is too large, and thatwe shall tune it carefullywith
a smaller change, thus decreasing the learning gain.

Remark 8 Over the past few years, although several
achievements have been made in linear speed control
of robotic fish [13,16,17,26], works on turning con-
trol of robotic fish are substantially less in literature,
and there are only some preliminary results. For exam-
ple, in [27] an open-loop control method is developed
to investigate the turning maneuvers of a multilink
robotic fish. It is shown that by adding different deflec-
tions to symmetric swimming gaits, the robotic fish is
able to perform turning motions. In [28], the authors
adopt a fuzzy logic control method for orientation con-
trol of a multilink robotic fish. The drawback of this

approach lies in the specificity of fuzzy rules design.
If the system dynamics is unknown, it is difficult to
tune the controller parameters. Even if the controller
has been well-tuned, it is only applicable to the robotic
fish in question, and difficult to be generalized to other
robotic fish prototypes. From the following simulation
and experiment results, it shows that the proposed con-
trol method performs very well for robotic fish turning
control despite easy tuning and less requirement on
accurate dynamical model.

4.2 Simulation results for turning control

In simulation, we set ρ = 1000 kg/m3 and cm =
0.5 kgm2, and the following parameters are from the
actual robotic fish: M = 0.4kg, l = 0.36m, and
A(l) = 0.1652 π/4 m2. For our robotic fish, the water
resistance coefficients f⊥ and f‖ are empirically deter-
mined to be 165.7056 kg/m according to the result in
[17]. Let the desired speed be θ0a = 0, θ0b = 0. The
target speed of the robotic fish is vd = 0.05 (m/s), and
the desired angular velocity is ωd = 0.02 (rad/s).

To expedite the learning speed, we adopt two self-
adaption laws to determine learning gains. That is,

γ1,i =
{

η1γ1,i−1, if sign
(
ev
i

) = sign
(
ev
i−1

)
,

1
η1

γ1,i−1, otherwise,
(31)

and

γ2,i =
{

η2γ2,i−1, if sign
(
eω
i

) = sign
(
eω
i−1

)
,

1
η2

γ2,i−1, otherwise.

(32)

Set the initial learning gains γ1,0 = 1, γ2,0 = 0.7,
and η1 = 1.1, η2 = 1.2. The simulation results are
shown in Figs. 8, 9 and 10. Figure 8 shows the con-
vergence of the tracking errors. The robotic fish is able
to achieve both the desired speed and angular velocity
simultaneously after about 15 sampling intervals. The
speed and angular velocity profiles of the robotic fish
along time axis are given in Fig. 9, where we can see
that both the speed and angular velocity of the robotic
fish can reach their steady states within one undulation
cycle. Moreover, Fig. 10 presents the trajectory of the
robotic fish. It shows that the robotic fish turns itself
clockwise by using the “turning” motion pattern. In
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Fig. 8 The variation of tracking error for turning versus motion
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Fig. 9 The profile of speed and angular velocity of the robotic
fish versus time

addition, Fig. 11 gives the variation of learning gains
with the self-adaption.

To show the effectiveness of the self-adaption rules
for learning gains, we calculate the average values of
the learning gain profiles shown in Fig. 11, which are
γ̄1,i = 1.8056 and γ̄2,i = 15.0755, then use them as
fixed learning gains in learning rules (27) and (28),
respectively. The convergence of tracking errors is pre-
sented in Fig. 12. Compared to Fig. 8, not only the
convergence rates are slower, but also the transient per-
formance inFig. 12 is non-smooth. Such a phenomenon
is not desirable in practical applications.

Remark 9 For highly nonlinear systems, how to select
an optimal learning gain is a challenging task. The self-
adaption law provides a simple way to design the learn-
ing gain, which only needs an initial learning gain and
an appropriate tuning parameter.
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Fig. 10 The trajectory of the robotic fish in a clockwise circular
maneuver: a trajectory within 40 s, b trajectory within 300 s
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Fig. 11 The profiles of learning gains versus motion number

4.3 Experimental results for turning control

To verify the effectiveness of the proposed controllers
(27) and (28), real-time experiments are conducted in
a water tank of the size 3 × 1.8 m2 with still water of
0.5 m in depth. In the experiment, an overhead cam-

123



www.manaraa.com

2724 X. Li et al.

0 10 20 30 40
−0.01

0

0.01

0.02

0.03

0.04

0.05

Motion number

Tr
ac

ki
ng

 e
rr

or
s

ei
v

ei
ω

Fig. 12 The variation of tracking error for turning with fixed
learning gains

Fig. 13 The robotic fish swims at the experiment of the turning
control

era is used to record the trajectories and positions of
the robotic fish. We send the amplitude signals to the
robotic fish from the host computer. After receiving
the signals of amplitude through the wireless module,
the processor transforms them to pulse width modu-
lation (PWM) signals to drive the servomotor. Then,
the motor starts to work and the corresponding swim-
ming gait will be generated by the fish according to
the received signals. The turning swimming mode of
the robotic fish is presented in Fig. 13, where the swim-
ming trajectory has been clearly indicated by an orange
dashed curve.

Same as the simulations, the desired speed and angu-
lar velocity of the robotic fish are vd = 0.05 (m/s) and
ωd = 0.02 (rad/s), respectively. The convergence of
the tracking errors is shown in Fig. 14, and the speed
and angular velocity profiles are presented in Fig. 15.
Compared to the simulation results, the convergence
rates of speed and angular velocity in experiments are
a little slower, which may be caused by the inaccuracy
of dynamic model or external disturbances. The oscil-
lations in the speed and angular velocity profiles shown
in Fig. 15 are acceptable since the robotic fish is actu-
ally an open-loop control systemwithin one undulation
cycle.
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Fig. 14 The robotic fish swims at the experiment of the speed
control
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Fig. 15 The robotic fish swims at the experiment of the speed
control

Remark 10 To remove the chattering errors in both
speed and angular speed, a robust nonlinear controller
that is equipped with uncertainty tolerance can be
applied.Togetherwith the proposed learning controller,
a dual-loop control approach is able to reject the system
uncertainties and drive the system plant to the desired
control target simultaneously.

5 Conclusion

In this work, an equilibrium-based learning approach
is developed. Different from the integral control, the
proposed learning scheme only updates as far as the
plant reaches an equilibrium that deviates from the ref-
erence set-point. For the integral control of nonlinear
systems, it is well-known that there lacks appropriate
analysis and design methods. While, for the proposed
learning control, the convergence of tracking error can
be proven analytically by applying the fixed point theo-
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rem despite the high nonlinearities in themodel. To val-
idate the effectiveness, the developed control approach
is applied to motion control of a tail-actuated robotic
fish. In details, we first construct a mathematical model
for the tail-actuated robotic fish according to Newton’s
second law and Lighthill’s small amplitude model. By
the virtue of the structure of the constructed dynami-
cal model, two learning algorithms are developed for
turning control of the robot. Furthermore, in order to
expedite the convergence rate, a self-adaption rule is
introduced to determine the learning gains. The effi-
ciencyof the proposed control approach is illustrated by
both simulations and real-time experiments. In future
work, the equilibrium-based learning control approach
will be applied in 3D motion control of robotic fish.

Funding Open Research Project of the State Key Laboratory
of Industrial Control Technology, Zhejiang University, China
(Grant No. ICT170345).
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